You’ll encounter a thicket of jargon when you shop for a new Wi-Fi router. We’ll explain some of the most common terms you’ll encounter (in alphabetical order).
AP steering A mesh-network router that supports AP steering will automatically direct its wireless clients to connect with whichever access point (AP) offers the strongest connection back to the router (and thus to the internet).
Backhaul The side of a network that carries data packets back to the router and out to the internet. Some tri-band mesh Wi-Fi systems, including the Netgear Orbi and Linksys Velop, dedicate an entire wireless network to backhaul. You can also set up wired backhaul by connecting the access point to the router using an ethernet cable, but that would require drilling holes in your walls and pulling the cable through, a job most people are reluctant to tackle.
Band steering A router with this feature can detect if a client device is dual-band capable (i.e., the client is outfitted with a Wi-Fi adapter that can operate on either the 2.4- or 5GHz frequency bands). The router will automatically push dual-band clients to connect to its least-congested network, which is usually the one operating on the 5GHz frequency band.
Beamforming An optional feature of the 802.11ac Wi-Fi standard that improves wireless bandwidth utilization by focusing the radio signals so that more data reaches the client and less radiates into the atmosphere. Click here for a more in-depth explanation of beamforming.
Dual-band vs. tri-band A dual-band Wi-Fi router operates two discrete networks, one on the 2.4GHz frequency band and a second on the less-congested 5GHz frequency band. Some types of tri-band routers split the 5GHz frequency band, using one swath of channels available in 5GHz spectrum to create a second network, and another swath of channels in that spectrum to operate a third network. Other tri-band routers operate discrete networks on the 2.4- and 5GHz bands, and a third network using spectrum available on the 60GHz band, though this technology has fallen out of favor recently.
ethernet ports A router must have at least two hardwired ethernet ports (either 100Mbps or gigabit per second). One (the WAN, or wide area network) connects to your broadband gateway (a cable or DSL modem, for instance). The other (a LAN, or local area network) connects any hardwired client. Some mesh Wi-Fi routers have auto-configuring ports that become WAN or LAN based on what gets plugged into them. You can increase the number of ethernet ports available on your network by plugging an ethernet switch into one of the LAN ports.
Mesh Wi-Fi access points typically have two ethernet ports, so they can serve as a wireless bridge for devices that don’t have their own Wi-Fi adapters. Alternatively, you can use one of the AP’s ports for data backhaul using an ethernet cable that’s connected to your router at the other end.
Guest network This is a virtual network that gives your guests access to the internet while blocking access to your own computers, NAS boxes, and other network clients.
Hub-and-spoke vs. mesh network In a hub-and-spoke network topology, each wireless access point exchanges data packets directly with the router. A wagon wheel makes for a good visual metaphor here. In a mesh network, wireless access points that are distant from the router can exchange data packets with their closest AP neighbor until the packets reach the router (and vice versa). In this instance, you might visualize a fishing net; or perhaps abstractly, a firefighter’s bucket brigade.
MU-MIMO The acronym stands for multiple user, multiple input/multiple output. MIMO describes a method of sending and receiving more than one data signal using the same radio channel. This is accomplished using a technique known as spatial multiplexing. In its original implementation in routers, client devices had to take turns communicating with the router, round-robin style. The switching happens fast enough that the interruptions are imperceptible, but it reduces the overall transmission speed. This is known as SU-MIMO (single-user MIMO). As you’ve probably guessed, MU-MIMO lets multiple client devices communicate with the router at the same time without interruption, significantly increasing transmission speed. Both the router and the client must support MU-MIMO for the scheme to work.
Parental controls The internet can be an unpleasant and even dangerous place for children to visit. Router-based parental controls promise some protection by restricting where a person can browse and what they can do while they’re online. Such controls can also restrict the hours that a device is allowed to be online—at least while the device is on that router’s network. Methods and practices—and effectiveness—vary widely. I’ve yet to see a system that’s better than just having an open and frank dialog with your kids, but that’s just my opinion.
Quality of Service (QoS) This concept describes a router’s ability to identify different types of data packets traveling over the network and then assign those packets higher or lower priority. You might want your router to give network traffic such as streaming video or VoIP (Voice over Internet Protocol) calls higher priority than file downloads, for example, because the former don’t tolerate interruptions. Waiting a little longer for a file to download is vastly preferable to watching a glitchy video.
Spatial streams The multiplexed signals described in MU-MIMO above are called spatial streams. The number of radios and antennas in the router determine how many spatial streams it can support; and the method used to encode the data, combined with the channel’s bandwidth, determines how much data can fit within each stream. An 802.11ac router using channels that are 80MHz wide can deliver throughput of roughly 433Mbps per spatial stream. Spatial streams operate in parallel, so adding them is akin to adding lanes on a highway. Where a 2x2 802.11ac router (two spatial streams to transmit and two to receive) can deliver throughput up to 867Mbps, a 4x4 802.11ac router can deliver up to 1,733Mbps. These are theoretical numbers, however; they don’t take into account protocol overhead and other factors, so you’ll never see real-world performance that high.
Wi-Fi speed ratings Vendors commonly market their 802.11ac routers (and 802.11ac Wi-Fi client adapters) by combining the throughput numbers for each of the router’s networks. A dual-band router capable of delivering 400Mbps on the 2.4GHz frequency band and 867Mbps on the 5GHz frequency band might be described as an AC1300 router (rounding up from 1,267, naturally). You’ll never experience 1,300Mbps (or even 1,267Mbps) of throughput, of course, because it’s not possible to bond the 2.4- and 5GHz networks together. But the classifications at least provide a point of comparison.
Find high-quality replacement Wireless Router Battery for sale at Batteriestar.com. Here you can find a great Wireless Router Battery at discount Wireless Router Battery prices.
コメント